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Deep Active Learning: Settings and Objective
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Active Learning for Segmentation for Driving Datasets

Why AL for Semantic Segmentation? 

• Images easy to collect 

Ø lots of unlabeled video data

• Annotation is expensive 

Ø Pixel-wise labeling
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~1.5hr

Labelling



Deep Active Learning: Research Questions
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● Integration of semi-supervised learning with 

AL is high effective for image classification

Ø To study AL methods with the integration of 

semi-supervised learning.
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● Current benchmarks focus on diverse data

● Real data is very redundant

Ø To study AL methods for different distributions 

w.r.t. redundancy in the dataset.



Experiments:

Datasets & Methods



Experiment Settings: Datasets

• Datasets (increasing redundancy ↓)
• PASCAL-VOC

• Cityscapes

• A2D2

§ A2D2: Pool-0f

§ A2D2: Pool-5f

§ A2D2: Pool-11f

§ A2D2: Pool-21f

§ A2D2: Pool-Aug
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● Datasets with different levels of redundancy
● Size: ~3K sampled from original A2D2 dataset
● Pool-Xf, where X=0,5,11,21 consecutive frames sampled randomly

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Pool-5f Pool-11f
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● Datasets with different levels of redundancy
● Size: ~3K sampled from original A2D2 dataset
● Pool-Xf, where X=0,5,11,21 consecutive frames sampled randomly
● Pool-Aug: 5 augmentations from each randomly sampled frame
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Batch-based acquisition method
Ø Based on batch cumulative objective

● Coreset selection
○ K-center selection

● Clustering
○ K-means

Active Learning Acquisition Methods

Single-sample acquisition method
Ø Based on per sample objective

● Uncertainty-based
○ Entropy 
○ Ensemble-based functions
○ EqualAL/ Consistency
○ BALD
○ Margin
○ Learning Loss
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Results



Single-sample vs Batch-based Active Learning: Results

● Single-sample acquisition methods perform better on diverse datasets.

● Batch-based acquisition methods perform better on redundant datasets.
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Single-sample vs Batch-based Active Learning: Analysis

● TSNE on A2D2: Pool-11f 

Ø Redundant dataset

● Single-sample performs worse on 

redundant datasets 

Ø Due to mode collapse
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Batch-based acquisitionSingle-sample Acquisition
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Deep Active Learning: Supervised Setting
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Deep Active Learning: Integration of Semi-supervised Learning
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Integration of Semi-supervised Learning: Results

● SSL is especially effective for redundant datasets.

● Semi-supervised learning aligns well with the batch-based method (CoreSet).

● SSL cluster assumption is compatible with CoreSet objective.
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Results Overview

● Single-sample uncertainty-driven method → diverse datasets

● Batch-based diversity-driven method → redundant datasets

● SSL integrates well with batch-based method.
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New Realistic A2D2-3k Task 
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● Current AL benchmarks for driving data are unrealistic.  

● We propose a suitable task for realistic evaluation of driving datasets.

Current AL benchmarks

Realistic driving scenario



New Realistic A2D2-3k Task 

Objective: To select 3K samples(~ Cityscapes size) from A2D2 dataset(~40K samples) to get best 

performance

● Uniform sampling is sub-optimal

● Batch-based acquisition with SSL works the best.
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Conclusion

• Active Learning for Semantic Segmentation is vital. 

• We provide some essentials for successful usage of AL methods based on

• Data distribution

• Acquisition functions

• Integration of semi-supervised learning
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Thank you!



KI Delta Learning is a project of the KI Familie. It was initiated 
and developed by the VDA Leitinitiative autonomous and 

connected driving and is funded by the Federal Ministry for 

Economic Affairs and Climate Action.
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Deep Active Learning: Evaluation
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Deep Active Learning: Evaluation
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Deep Active Learning: Evaluation
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