Scalable Al for Automated Driving

Final Event| March 10,2023

A Low-Complexity Approach for Domain Adaptation

Joshua Niemeijer, Jorg Schafer | DLR



Effect of Domain Switch ‘

Source domain performance Target domain performance

Cityscapes BDD

Didactics | An Iterative Model for Domain Adaptation



Domain Adaptation
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A Low-Complexity Domain Adaptation Approach ‘
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Generalizing Source Only Training
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Strong data augmentation
Cropping, Color Jitter and gaussian blurring
Sampling: Zhu et. al.:“Improving semantic segmentation via video propagation and label relaxation” 2019
Crops are generated with an uniform class distribution
More weight to seldom classes but no overfitting due to strong augmentation
Less weight to often classes less overfitting on the simple synthetic data



Generalizing Source Only Training
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When trained on GTA5 and tested on Cityscapes
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With random cropping and horizontal flipping: 25.5% mloU

With additional color Jitter and gaussian blurring: 38.8% mloU

When additionally 50% of the epoch is sampled uniform: 41.4% mioU

When additionally 100% of the epoch is sampled uniform: 44.5% mloU



Goal: Source and target domain class distribution alignment in pre-logit feature space

Approach: Cluster pre-logit feature space to “class prototypes”
However: For target domain the corresponding feature representation is not known

Assumption: The closest class prototype is the correct one
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Determine class centroids Compute cosine similarity Minimize the entropy
on source domain between target representations in the similarity matrix

and class centroids

» Clustering is inspired by K. Saito et. al. “Universal Domain Adaptation through Self Supervision” 2020
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Domain Adaptation ‘

Half of the batch from labeled source domain and half from the target domain

We apply our clustering loss here, as well
Observation: The self-supervision improves the self-training
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The Iterative Model

Training Phase

Source Domain Data

Step1: Training on source domain yields first model
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The lterative Model ‘

Training Phase Improve Pseudo-Labels
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Step1: Training on source domain yields first model
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Step2: Create pseudo labels with the model

12



The lterative Model ‘
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Step1: Training on source domain yields first model

Step2: Create pseudo labels with the model
Step3: Reinitialize the model and re-train on source and target domain

The self-training and the self-supervision are performed on the target domain
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The Iterative Model

Training Phase

Source Domain Data
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Step1: Training on source domain yields first model
Step2: Create pseudo labels with the model
Step3: Reinitialize the model and re-train on source and target domain
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The self-training and the self-supervision are performed on the target domain

Step4: Repeat the process

14



The Iterative Process (GTAb to Cityscapes) ‘

Synergy between self-training and self-supervision

0.56 A
The self-training converges after 4 iterations
0.54 A
Additional semantic clustering: Improvement for 15 steps
0.52 A
Also the gradient is steeper
0.50
Interpretation: =
. . . . . . £ 0.48 A 4 4 °
The self-training aligns the class distributions /
0.46 -
Aligned class distributions lead to an improved clustering —e— SelfTrain source uniform 50% -
. . . 0.44 - SelfTrain target + source uniform 50%
The improved clustering achieves better pseudo labels —a— EasyAdap
. . . 0.42 - —— Semantic Self Supervision
Better pseudo labels again lead to an improved clustering —— Source only uniform sampling 50%
Synergistic effect 0123456 78 910111213 14151617 18 19 20

Pseudo Label Steps
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Quantitative Evaluation: GTAS to Cityscapes

Our model is low in complexity compared to state of the art

State of the art combines different loss functions and stages

E.g. ProDA e.g. has got:
Three training stages
Combines: Self Training, Self Supervision, adversarial training ...
High complexity comes with need for finetuning

Our model is low in complexity
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Qualitative Results

Before Domain Adaptation After Domain Adaptation

Published at ,,Conference on Robot Learning 2022
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