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Model Compression: Pruning
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Deep Neural Network (DNN) – Challenges and Limitations

• Deep Convolutional Neural Networks (CNNs) achieve superior performance but bring expensive 

computation cost
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Deep Neural Network (DNN) – Compression

• Reducing the size of a trained model
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Convolutional Neural Networks – A Simple Model

6

Input Data Convolutional Layers Dense Layer
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Model Compression on Convolutional Layers
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Filter Pruning

• Reduced the complexity of a CNN by removing less important filter kernelsA typical pruning algorithm is a 

three-stage pipeline, i.e., training, pruning, and retraining
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SoTA Pruning Methods

L1 Norm [1]: 
• Filter-Kernels Ranking with respect to the values of  L1-norm ||Fi,j||

Soft Filter Pruning (SFT) [2]:
• Filter-Kernels Ranking using L1-norm, but iterative pruning-&-

retraining cycles

HRank Method [3]: 
• Filer-Kernels ranking through the SVD values of corresponding 

Feature-Maps
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[1] Li et al., Pruning filters for efficient convnets. arXiv preprint, 2016.
[2] He et al., Asymptotic soft filter pruning for deep convolutional neural networks. IEEE transactions on cybernetics, 2019.
[3] Lin et al., HRank: Filter pruning using highrank feature map. CVPR, 2020.
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Interpretable Pruning
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Motivation: DNN’s Interpretation & Understanding

• DNNs act as a black box -> lack of transparency in interpreting results

• Heatmaps: SotA methods for interpreting DNNs

• Deep Taylor Decomposition (DTD) for Image Classification [4]
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[4] Montavon et al., Explaining nonlinear classification decisions with deep Taylor decomposition, Pattern Recognition, Volume 65, 2017.
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Motivation: DNN’s Interpretation & Understanding

• A ZF’s contribution in KI-Absicherung Project: Adapted Deep Tailor Decomposition (DTD) for Object Detection (SSD: 

Single Shot Detector [5])
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[5] Liu et al., SSD: Single Shot Multibox Detector. In European Conference on Computer Vision, 2016.
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[5] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S.,Fu, C.-Y., and Berg, A. C. (2016). SSD: Single shot multibox detector. In European conference on computer 
vision, pages 21–37. Springer.

DTD (SSD)

Main Contribution in KIDL
We use heatmaps for pruning to improve transparency and safety aspects
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Illustration of Interpretable Pruning Method
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DTD Heatmaps for Filter Kernels
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Layer-wise Heatmaps ordering through brightness
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Removal of Filter Kernels Corresponding to low values
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max mid min 33% Pruning Ratio (i.e. removing 3 out of total 9 filters)
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Removal of Filter Kernels Corresponding to low values
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max mid min
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66% Pruning Ratio (i.e. removing 6 out of total 9 filters)



Results
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Problem Domain: Image Classification
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https://www.cs.toronto.edu/~kriz/cifar.html

CIFAR10 & 100 Dataset

VGG16 Classification 
Architecture

https://arxiv.org/abs/1409.1556v6

• Model: VGG16

• Dataset: CIFAR10 & CIFAR100

• Pruning Methods:

• HRank

• Interpretable Pruning
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Results: Classification

• Comparing HRank with Interpretable Pruning
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Problem Domain: Object Detection

• Model: Single Shot Detector (SSD)

• Dataset: PASCAL VOC 2007

• Pruning Methods: 
• HRank (we extended it for object detection problem)

• Interpretable Pruning

L1 Norm
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http://host.robots.ox.ac.uk/pascal/VOC/voc2007/

PASCAL VOC 2007 Dataset

SSD - Object Detection & Classification Architecture

https://arxiv.org/abs/1409.1556
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Results: Object Detection
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• Comparing HRank with Interpretable Pruning (IP)

IP



Summary & Conclusion

• Briefly presented the main concept of filter pruning process for model compression

• Introduced the approach of Interpretable Pruning

• Compared Interpretable Pruning  with HRank (SoTA pruning technique) for image classification and 

object detection problems

• Interpretable Pruning results are comparable with HRank, and it makes the model compression 

process more transparent
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KI Delta Learning is a project of the KI Familie. It was initiated 
and developed by the VDA Leitinitiative autonomous and 

connected driving and is funded by the Federal Ministry for 

Economic Affairs and Climate Action.
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