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Examples from the DAWN dataset

CityScapes
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• Other examples:

– Training on European roads, testing on US roads
– Training on rendered images, testing on natural images
– New camera hardware
– Adding new classes

• Approaches:
– Adaptation (various types of supervision)
– Generalization

• Self-supervised learning promising 
– easier to expand the distribution
– learning of short cuts less likely

Distribution shifts
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Test domain

Training domain
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Synthetic training data Test data

FlyingChairs FlyingThings3D Dosovitskiy et al. 2015, Ilg et al. 2017
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Mayer et al. 2016, Schröppel et al. 2022
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• Optical flow and stereo are correspondence tasks

à features determined based on how well they serve matching
à only priors for resolving ambiguities are domain specific

• Recognition tasks are “remembering” tasks
à features are learned to discriminate training samples
à they are not necessarily descriptive (short cuts likely)

Why are recognition tasks different?
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• Recognition at the instance level is closer to a correspondence task

• Variation w.r.t. 
– Pose, camera parameters
– Lighting
– Background
– Occlusion

• Much of this can be simulated (approximately) by data augmentation
– self-supervised feature learning with contrastive losses
– learn feature embedding that contracts all instance variations

Instance matching: invariance to transformations
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• Train CNN to discriminate surrogate classes defined by data 

augmentation

• Yielded good features to match instances

Exemplar-CNN
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Dosovitskiy et al. 2014
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• Contrastive losses based on positive pairs, for example: 

• Typically established via 
synthetic data augmentation

à Contrastive learning fosters instance matching

Why is this good for recognition in general? 

Contrastive learning on synthetic transformations
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• How different are instances really?

a) Much variation is covered by instance transformations
b) Larger differences often covered via transitivity

• Contrastive learning respects transitivity (though hard to control)

à Explains why self-supervised learning works at class level
(e.g. Caron et al. 2021, Zadaianchuk et al. 2023)

Classification as instance matching?

10



Thomas Brox

Titelmasterformat durch Klicken bearbeitenUnsupervised semantic segmentation
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Zadaianchuk et al. 2023
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• Image-text pairing is more natural and more powerful than labeling

• Often these pairs already exist (in large numbers)
– Image captions or tags in internet photos
– Video subtitles, video descriptions 
– Speech recognition in videos

• Data for driving scenarios is scarce

Semantic labels for free: image-text learning
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CLIP, Radford et al. 2021
Trained on 400 million image-text pairs obtained from the internet
via 500.000 word queries
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• CLIP yields a “world” model that applies to many downstream tasks

• Out-of-distribution problem stays: no driving data on the web

• Concepts of a good foundation model could transfer (e.g. fog or snow)

Foundation models and automatic driving: a love story?
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Driving domain

Good foundation model
Driving model



Thomas Brox

Titelmasterformat durch Klicken bearbeiten

• Self-supervised learning enables open 
world generalization

• Powerful learning cue comes from instance 
matching

• Can lead to class-level embeddings via 
transitivity

• Image-text pairing yields high-level 
learning cues

Summary
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