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Introduction

« Empirical study to investigate effects of
catastrophic forgetting for Object Detection
for Autonomous Driving

* Autonomous Systems are exposed to ever-
changing data-distributions (Figure 1)

« Incremental training can lead to a degradation
In performance, known as catastrophic
forgetting

 Investigation of Domain-incremental Learning
Class-incremental Learning (Figure 2) for
BDD100K [1]

Metrics
Model is evaluated after each task (mAP) on all K
tasks PER"KxK
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Results
The order of tasks and the data distribution of
the input influences the severity of forgetting.

Order | avg. mAP  BWT(%) FWT
Time of Day (Day, Night, Dawn/Dusk)
Day — Dawn — Night 0.263 -10.5% 0.253
Day — Night — Dawn 7 0.228 -15.0%  0.209
Dawn — Day — Night 0.241 -5.7% 0.21
Dawn — Night — Day i 0.264 11.5% 0.189
Night — Day — Dawn 0.263 -10.2%  0.263
Night — Dawn — Day 0.268 7.2% 0.223
Scene (Citystreet, Highway, Residential, ...)

Descending by occurrences 0.244 -183%  0.267
Ascending by occurrences 0.286 176 % 0.085

] Daytime

[ ] Night

[ ] Dawn/Dusk

The architecture of the detector has an influence
on the forgetting.

Architecture avg. mAP BWT(%) FWT
Time of Day
Faster-RCNN (ResNet) 0.263 -10.5% 0.253
Faster-RCNN (Swin) 0.270 -10.0% 0.261
FCOS (ResNet) 0.240 -12.6% 0.229
DDETR (ResNet) 0.276 -8.1% 0.266
Scene
Faster-RCNN (ResNet) 0.244 -15.3% 0.267
Faster-RCNN (Swin) 0.281 -74%  0.294
FCOS (ResNet) 0.215 -202% 0.247
DDETR (ResNet) 0.219 -252% 0.291

Class-incremental learning leads to more severe
forgetting compared to domain-incremental

learning.
AP
Inc. | Car Truck Bus Mot.- Train Rider Bi- Tr. Tr. Pedes-
cycle cycle Sign Light trian
5-5
#1 0.499 0.422 0.44 0.173 0.00
#2 0.00 0.00 000 0.00 000 0.331 0.234 0.224 0.372 0.233
0-1
#1 0.497 0.436 0.445 0.195 0.00 0.196 0.22 0.368 0.223
#2 0.00 0.00 000 000 000 000 000 000 000 0333
Conclusion

« Continuous Learning highly depends on
chosen scenario

« Unbalanced data distributions must be
accounted for when training incrementally

 Task-agnostic RPN (Faster-RCNN) improves
performance

« Future research should incorporate random
orderings and more realistic scenarios
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Figure 1: Distribution of Time of Day (left) and Weather (right).
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Figure 2: a) Class-incremental and b) Domain-incremental Learning (©ZF Group)
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