

Severity of Catastrophic Forgetting in Object Detection for Autonomous Driving

Christian Witte, Syed Saqib Bukhari, **Georg Schneider**

Introduction

- Empirical study to investigate effects of catastrophic forgetting for Object Detection for Autonomous Driving
- Autonomous Systems are exposed to everchanging data-distributions (Figure 1)
- Incremental training can lead to a degradation in performance, known as catastrophic forgetting
- Investigation of Domain-incremental Learning Class-incremental Learning (Figure 2) for BDD100K [1]

Metrics

Model is evaluated after each task (mAP) on all K tasks $P \in \mathbb{R}^{k} K \times K$

- avg. $mAP = \frac{1}{K} \sum_{i=1}^{K} P_{K,i}$ Average mAP
- $BWT = \frac{1}{K-1} \sum_{i=1}^{K-1} p_{K,i} p_{i,i}$ Backward Transfer [2]
- Forward Transfer [2] $FWT = \frac{1}{K-1} \sum_{i=2}^{K} p_{i-1,i} \bar{b}_i$

Results

The **order of tasks** and the **data distribution** of the input influences the severity of forgetting.

Order	avg. mAP	BWT(%)	FWT
Time of I	Day (Day, Nig	ht, Dawn/Du	isk)
Day → Dawn → Night	0.263	-10.5%	0.253
Day → Night → Dawn †	0.228	-15.0%	0.209
$Dawn \rightarrow Day \rightarrow Night$	0.241	-5.7%	0.21
$Dawn \rightarrow Night \rightarrow Day \ddagger$	0.264	11.5%	0.189
$Night \rightarrow Day \rightarrow Dawn$	0.263	-10.2%	0.263
$Night \rightarrow Dawn \rightarrow Day$	0.268	7.2%	0.223
Scene (City	street, Highw	ay, Residenti	al,)
Descending by occurrences	0.244	-18.3%	0.267
Ascending by occurrences	0.286	176%	0.085

The **architecture** of the detector has an influence on the forgetting.

Architecture	avg. mAP	BWT(%)	FWT						
	Time of Day								
Faster-RCNN (ResNet)	0.263	-10.5%	0.253						
Faster-RCNN (Swin)	0.270	-10.0%	0.261						
FCOS (ResNet)	0.240	-12.6%	0.229						
DDETR (ResNet)	0.276	-8.1%	0.266						
	Scene								
Faster-RCNN (ResNet)	0.244	-15.3%	0.267						
Faster-RCNN (Swin)	0.281	-7.4 %	0.294						
FCOS (ResNet)	0.215	-20.2%	0.247						
DDETR (ResNet)	0.219	-25.2%	0.291						

Class-incremental learning leads to more severe forgetting compared to domain-incremental learning.

AP									1200	
Inc.	Car	Truck	Bus	Mot	Train	Rider	Bi- cycle	Tr. Sign	Tr. Light	Pedes- trian
	<u>.</u>			-,		5-5	-)	6		RESERVED.
#1	0.499	0.422	0.44	0.173	0.00					
#2	0.00	0.00	0.00	0.00	0.00	0.331	0.234	0.224	0.372	0.233
	e de					9-1				
#1	0.497	0.436	0.445	0.195	0.00	0.196	0.22	0.368	0.223	
#2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.333

Conclusion

- Continuous Learning highly depends on chosen scenario
- Unbalanced data distributions must be accounted for when training incrementally
- Task-agnostic RPN (Faster-RCNN) improves performance
- Future research should incorporate random orderings and more realistic scenarios

References

[1] Yu, F. et al. (2020), "Bdd100k: A diverse driving dataset for heterogeneous multitask learning." in CVPR (2020). [2] Lopez-Paz, D. and Ranzato, M., "Gradient episodic memory for continual learning" in NeurIPS (2017).

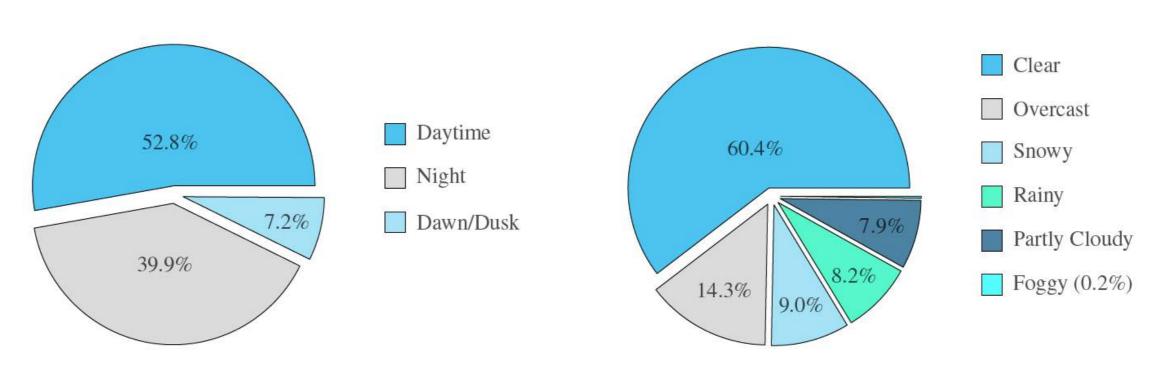


Figure 1: Distribution of Time of Day (left) and Weather (right). (©ZF Group)

Partners

External partners Mercedes-Benz

BMW
GROUP

BOSCH

CARIAD

Porsche Engineering

driving technologies

Valeo

F TECHNOLOGY Imposent of the partition of the partiti

For more information contact: Saqib.Bukhari@zf.com

KI Delta Learning is a project of the KI Familie. It was initiated and developed by the VDA Leitinitiative autonomous and connected driving and is funded by the Federal Ministry for Economic Affairs and Climate Action.

