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Trajectory Prediction Model (CRAT-Pred)

Objective
For safe autonomous driving, there is a strong 
need to predict the future motion of vehicles 
participating in traffic. The architectural design 
and the corresponding training process of 
most state-of-the-art models is designed for 
the incorporation of map information. With 
CRAT-Pred we propose a novel trajectory 
prediction method that achieves competitive 
results without relying on map data.

Main Contributions:
1) Novel map-free trajectory prediction model 

for vehicles
2) Extensive evaluation on the Argoverse

Motion Forecasting Dataset [6] proves state-
of-the-art performance with significantly 
less model parameters

3) Quantitatively show that self-attention is 
able to learn social interactions

Self-Attention as a Score for Social 
Interactions
• Limit the vehicles (social context) to target 

agent and 𝐿𝑠 other agents
• Two selection strategies:

1) Euclidean selection (blue): 𝐿𝑠 vehicles 
that have the lowest Euclidean distance 
to the target vehicle

2) Attention-based selection (orange): 𝐿𝑠
vehicles that have the highest attention 
weights to the target vehicle during the 
forward pass of our model

• Training and evaluation of LaneGCN [3] on 
the subsets

• Attention-based selection is able to extract 
the most relevant surrounding vehicles

• Attention weights can be interpreted as 
interaction scores
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Figure 2: Qualitative results. (© Mercedes-Benz AG)
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Figure 1: Model architecture (© Mercedes-Benz AG)

Table 1: Quantitative results. Our model outperforms all map-free 
baselines by a large margin.

Figure 3: Comparison with models that use an HD map. text
(© Mercedes-Benz AG)

Figure 4: Interaction score evaluation (© Mercedes-Benz AG)


